您好,欢迎来到大智教育集团!统一热线:4006328766 官方微信:dazhi-211 官方微博:大智教育集团
登陆  |  注册
全部区域

小学数学“简便计算”

更新日期:2018-02-28 09:50:43 浏览量:3378
  简便计算三字经  
 
做简算,是享受。
细观察,找特点。
连续加,结对子。
连续乘,找朋友。
连续减,减去和。
连续除,除以积。
减去和,可连减。
除以积,可连除。
乘和差,分别乘。
积加减,莫慌张,
同因数,提出来,
异因数,括号放。
同级算,可交换。
特殊数,巧拆分。
合理算,我能行。
 01 
带符号搬家法
当一个计算题只有同一级运算(只有乘除或只有加减运算)又没有括号时,我们可以“带符号搬家”。
a+b+c=a+c+b
a+b-c=a-c+b
a-b+c=a+c-b
a-b-c=a-c-b
a×b×c=a×c×b
a÷b÷c=a÷c÷b
a×b÷c=a÷c×b
a÷b×c=a×c÷b)     
 02 
结合律法
(一)加括号法
1.当一个计算题只有加减运算又没有括号时,我们可以在加号后面直接添括号,括到括号里的运算原来是加还是加,是减还是减。但是在减号后面添括号时,括到括号里的运算,原来是加,现在就要变为减;原来是减,现在就要变为加。(即在加减运算中添括号时,括号前是加号,括号里不变号,括号前是减号,括号里要变号。)             
a+b+c=a+(b+c)
a+b-c=a +(b-c)   
a-b+c=a-(b-c)
a-b-c= a-( b +c)
 2.当一个计算题只有乘除运算又没有括号时,我们可以在乘号后面直接添括号,括到括号里的运算,原来是乘还是乘,是除还是除。但是在除号后面添括号时,括到括号里的运算,原来是乘,现在就要变为除;原来是除,现在就要变为乘。(即在乘除运算中添括号时,括号前是乘号,括号里不变号,括号前是除号,括号里要变号。)   
          
a×b×c=a×(b×c)
a×b÷c=a×(b÷c)
a÷b÷c=a÷(b×c)  
a÷b×c=a÷(b÷c)
(二)去括号法
 1.当一个计算题只有加减运算又有括号时,我们可以将加号后面的括号直接去掉,原来是加现在还是加,是减还是减。但是将减号后面的括号去掉时,原来括号里的加,现在要变为减;原来是减,现在就要变为加。(现在没有括号了,可以带符号搬家了哈)  (注:去掉括号是添加括号的逆运算)
a+(b+c)= a+b+c
    
a +(b-c)= a+b-c 
  
a- (b-c)= a-b+c    
  
a-( b +c)= a-b-c
2.当一个计算题只有乘除运算又有括号时,我们可以将乘号后面的括号直接去掉,原来是乘还是乘,是除还是除。但是将除号后面的括号去掉时,原来括号里的乘,现在就要变为除;原来是除,现在就要变为乘。(现在没有括号了,可以带符号搬家了哈)    (注:去掉括号是添加括号的逆运算)
a×(b×c) = a×b×c
a×(b÷c) = a×b÷c
a÷(b×c) = a÷b÷c  
a÷(b÷c) = a÷b×c
 03 
乘法分配律法
1.分配法
括号里是加或减运算,与另一个数相乘,注意分配
24×(11/12-3/8-1/6-1/3)        
     
2.提取公因式
注意相同因数的提取。
0.92×1.41+0.92×8.59      16/5×7/13-3/5×7/13     
3.注意构造,让算式满足乘法分配律的条件。
7/25×103-7/25×2-7/25      2.6×9.9  
 04 
借来还去法
看到名字,就知道这个方法的含义。用此方法时,需要注意观察,发现规律。还要注意还哦 ,有借有还,再借不难嘛。       
9999+999+99+9        
4821-998 
 05 
拆分法
顾名思义,拆分法就是为了方便计算把一个数拆成几个数。这需要掌握一些“好朋友”,如:2和5,4和5,2和2.5,4和2.5,8和1.25等。分拆还要注意不要改变数的大小哦。
3.2×12.5×25     
1.25×88      
3.6×0.25 
 06 
巧变除为乘
也就是说,把除法变成乘法,例如:除以1/4可以变成乘4。
7.6÷0.25         
3.5÷0.125        
 07 
裂项法
分数裂项是指将分数算式中的项进行拆分,使拆分后的项可前后抵消,这种拆项计算称为裂项法.常见的裂项方法是将数字分拆成两个或多个数字单位的和或差。
遇到裂项的计算题时,要仔细的观察每项的分子和分母,找出每项分子分母之间具有的相同的关系,找出共有部分,裂项的题目无需复杂的计算,一般都是中间部分消去的过程,这样的话,找到相邻两项的相似部分,让它们消去才是最根本的。
分数裂项的三大关键特征:
(1)分子全部相同,最简单形式为都是1的,复杂形式可为都是x(x为任意自然数)的,但是只要将x提取出来即可转化为分子都是1的运算。
(2)分母上均为几个自然数的乘积形式,并且满足相邻2个分母上的因数“首尾相接”
(3)分母上几个因数间的差是一个定值。  

 

 

上一篇:新学期,先抓习惯,再谈成绩

下一篇:2018济南三大名校报读攻略

欢迎来到大智,请选择合适的大智分校所在区域